YXZ的博客

好好努力,天天向上


  • 主页

  • 标签

  • 分类

  • 归档

  • 站点地图

  • 搜索

分布式服务接口请求的顺序性如何保证?

发表于 2019-03-04 | 分类于 面试题 | 评论数: | 阅读次数:

面试题

分布式服务接口请求的顺序性如何保证?

面试官心理分析

其实分布式系统接口的调用顺序,也是个问题,一般来说是不用保证顺序的。但是有时候可能确实是需要严格的顺序保证。给大家举个例子,你服务 A 调用服务 B,先插入再删除。好,结果俩请求过去了,落在不同机器上,可能插入请求因为某些原因执行慢了一些,导致删除请求先执行了,此时因为没数据所以啥效果也没有;结果这个时候插入请求过来了,好,数据插入进去了,那就尴尬了。

本来应该是 “先插入 -> 再删除”,这条数据应该没了,结果现在 “先删除 -> 再插入”,数据还存在,最后你死都想不明白是怎么回事。

所以这都是分布式系统一些很常见的问题。

面试题剖析

首先,一般来说,个人建议是,你们从业务逻辑上设计的这个系统最好是不需要这种顺序性的保证,因为一旦引入顺序性保障,比如使用分布式锁,会导致系统复杂度上升,而且会带来效率低下,热点数据压力过大等问题。

下面我给个我们用过的方案吧,简单来说,首先你得用 dubbo 的一致性 hash 负载均衡策略,将比如某一个订单 id 对应的请求都给分发到某个机器上去,接着就是在那个机器上因为可能还是多线程并发执行的,你可能得立即将某个订单 id 对应的请求扔一个内存队列里去,强制排队,这样来确保他们的顺序性。

distributed-system-request-sequence

阅读全文 »

基于 Hystrix 信号量机制实现资源隔离

发表于 2019-03-04 | 分类于 面试题 | 评论数: | 阅读次数:

基于 Hystrix 信号量机制实现资源隔离

Hystrix 里面核心的一项功能,其实就是所谓的资源隔离,要解决的最最核心的问题,就是将多个依赖服务的调用分别隔离到各自的资源池内。避免说对某一个依赖服务的调用,因为依赖服务的接口调用的延迟或者失败,导致服务所有的线程资源全部耗费在这个服务的接口调用上。一旦说某个服务的线程资源全部耗尽的话,就可能导致服务崩溃,甚至说这种故障会不断蔓延。

Hystrix 实现资源隔离,主要有两种技术:

  • 线程池
  • 信号量

默认情况下,Hystrix 使用线程池模式。

前面已经说过线程池技术了,这一小节就来说说信号量机制实现资源隔离,以及这两种技术的区别与具体应用场景。

信号量机制

信号量的资源隔离只是起到一个开关的作用,比如,服务 A 的信号量大小为 10,那么就是说它同时只允许有 10 个 tomcat 线程来访问服务 A,其它的请求都会被拒绝,从而达到资源隔离和限流保护的作用。

hystrix-semphore

阅读全文 »

基于 Hystrix 线程池技术实现资源隔离

发表于 2019-03-04 | 分类于 面试题 | 评论数: | 阅读次数:

基于 Hystrix 线程池技术实现资源隔离

上一讲提到,如果从 Nginx 开始,缓存都失效了,Nginx 会直接通过缓存服务调用商品服务获取最新商品数据(我们基于电商项目做个讨论),有可能出现调用延时而把缓存服务资源耗尽的情况。这里,我们就来说说,怎么通过 Hystrix 线程池技术实现资源隔离。

资源隔离,就是说,你如果要把对某一个依赖服务的所有调用请求,全部隔离在同一份资源池内,不会去用其它资源了,这就叫资源隔离。哪怕对这个依赖服务,比如说商品服务,现在同时发起的调用量已经到了 1000,但是线程池内就 10 个线程,最多就只会用这 10 个线程去执行,不会说,对商品服务的请求,因为接口调用延时,将 tomcat 内部所有的线程资源全部耗尽。

Hystrix 进行资源隔离,其实是提供了一个抽象,叫做 command。这也是 Hystrix 最最基本的资源隔离技术。

利用 HystrixCommand 获取单条数据

我们通过将调用商品服务的操作封装在 HystrixCommand 中,限定一个 key,比如下面的 GetProductInfoCommandGroup,在这里我们可以简单认为这是一个线程池,每次调用商品服务,就只会用该线程池中的资源,不会再去用其它线程资源了。

阅读全文 »

使用 Redis 如何设计分布式锁?使用 Zookeeper 来设计分布式锁可以吗?以上两种分布式锁的实现方式哪种效率比较高?

发表于 2019-03-04 | 分类于 面试题 | 评论数: | 阅读次数:

面试题

一般实现分布式锁都有哪些方式?使用 redis 如何设计分布式锁?使用 zk 来设计分布式锁可以吗?这两种分布式锁的实现方式哪种效率比较高?

面试官心理分析

其实一般问问题,都是这么问的,先问问你 zk,然后其实是要过度到 zk 关联的一些问题里去,比如分布式锁。因为在分布式系统开发中,分布式锁的使用场景还是很常见的。

面试题剖析

redis 分布式锁

官方叫做 RedLock 算法,是 redis 官方支持的分布式锁算法。

这个分布式锁有 3 个重要的考量点:

  • 互斥(只能有一个客户端获取锁)
  • 不能死锁
  • 容错(只要大部分 redis 节点创建了这把锁就可以)
    阅读全文 »

基于本地缓存的 fallback 降级机制

发表于 2019-03-04 | 分类于 面试题 | 评论数: | 阅读次数:

基于本地缓存的 fallback 降级机制

Hystrix 出现以下四种情况,都会去调用 fallback 降级机制:

  • 断路器处于打开的状态。
  • 资源池已满(线程池+队列 / 信号量)。
  • Hystrix 调用各种接口,或者访问外部依赖,比如 MySQL、Redis、Zookeeper、Kafka 等等,出现了任何异常的情况。
  • 访问外部依赖的时候,访问时间过长,报了 TimeoutException 异常。

两种最经典的降级机制

  • 纯内存数据

    在降级逻辑中,你可以在内存中维护一个 ehcache,作为一个纯内存的基于 LRU 自动清理的缓存,让数据放在缓存内。如果说外部依赖有异常,fallback 这里直接尝试从 ehcache 中获取数据。

  • 默认值

    fallback 降级逻辑中,也可以直接返回一个默认值。

    阅读全文 »

如何保证 redis 的高并发和高可用?

发表于 2019-03-04 | 分类于 面试题 | 评论数: | 阅读次数:

面试题

如何保证 redis 的高并发和高可用?redis 的主从复制原理能介绍一下么?redis 的哨兵原理能介绍一下么?

面试官心理分析

其实问这个问题,主要是考考你,redis 单机能承载多高并发?如果单机扛不住如何扩容扛更多的并发?redis 会不会挂?既然 redis 会挂那怎么保证 redis 是高可用的?

其实针对的都是项目中你肯定要考虑的一些问题,如果你没考虑过,那确实你对生产系统中的问题思考太少。

面试题剖析

如果你用 redis 缓存技术的话,肯定要考虑如何用 redis 来加多台机器,保证 redis 是高并发的,还有就是如何让 redis 保证自己不是挂掉以后就直接死掉了,即 redis 高可用。

由于此节内容较多,因此,会分为两个小节进行讲解。

  • redis 主从架构
  • redis 基于哨兵实现高可用
    阅读全文 »

如何保证消息不被重复消费?或者说,如何保证消息消费的幂等性?

发表于 2019-03-04 | 分类于 面试题 | 评论数: | 阅读次数:

面试题

如何保证消息不被重复消费?或者说,如何保证消息消费的幂等性?

面试官心理分析

其实这是很常见的一个问题,这俩问题基本可以连起来问。既然是消费消息,那肯定要考虑会不会重复消费?能不能避免重复消费?或者重复消费了也别造成系统异常可以吗?这个是 MQ 领域的基本问题,其实本质上还是问你使用消息队列如何保证幂等性,这个是你架构里要考虑的一个问题。

面试题剖析

回答这个问题,首先你别听到重复消息这个事儿,就一无所知吧,你先大概说一说可能会有哪些重复消费的问题。

首先,比如 RabbitMQ、RocketMQ、Kafka,都有可能会出现消息重复消费的问题,正常。因为这问题通常不是 MQ 自己保证的,是由我们开发来保证的。挑一个 Kafka 来举个例子,说说怎么重复消费吧。

Kafka 实际上有个 offset 的概念,就是每个消息写进去,都有一个 offset,代表消息的序号,然后 consumer 消费了数据之后,每隔一段时间(定时定期),会把自己消费过的消息的 offset 提交一下,表示“我已经消费过了,下次我要是重启啥的,你就让我继续从上次消费到的 offset 来继续消费吧”。

但是凡事总有意外,比如我们之前生产经常遇到的,就是你有时候重启系统,看你怎么重启了,如果碰到点着急的,直接 kill 进程了,再重启。这会导致 consumer 有些消息处理了,但是没来得及提交 offset,尴尬了。重启之后,少数消息会再次消费一次。

阅读全文 »

如何保证消息的顺序性?

发表于 2019-03-04 | 分类于 面试题 | 评论数: | 阅读次数:

面试题

如何保证消息的顺序性?

面试官心理分析

其实这个也是用 MQ 的时候必问的话题,第一看看你了不了解顺序这个事儿?第二看看你有没有办法保证消息是有顺序的?这是生产系统中常见的问题。

面试题剖析

我举个例子,我们以前做过一个 mysql binlog 同步的系统,压力还是非常大的,日同步数据要达到上亿,就是说数据从一个 mysql 库原封不动地同步到另一个 mysql 库里面去(mysql -> mysql)。常见的一点在于说比如大数据 team,就需要同步一个 mysql 库过来,对公司的业务系统的数据做各种复杂的操作。

你在 mysql 里增删改一条数据,对应出来了增删改 3 条 binlog 日志,接着这三条 binlog 发送到 MQ 里面,再消费出来依次执行,起码得保证人家是按照顺序来的吧?不然本来是:增加、修改、删除;你楞是换了顺序给执行成删除、修改、增加,不全错了么。

本来这个数据同步过来,应该最后这个数据被删除了;结果你搞错了这个顺序,最后这个数据保留下来了,数据同步就出错了。

先看看顺序会错乱的俩场景:

  • RabbitMQ:一个 queue,多个 consumer。比如,生产者向 RabbitMQ 里发送了三条数据,顺序依次是 data1/data2/data3,压入的是 RabbitMQ 的一个内存队列。有三个消费者分别从 MQ 中消费这三条数据中的一条,结果消费者2先执行完操作,把 data2 存入数据库,然后是 data1/data3。这不明显乱了。

rabbitmq-order-01

阅读全文 »

如何基于 dubbo 进行服务治理、服务降级、失败重试以及超时重试?

发表于 2019-03-04 | 分类于 面试题 | 评论数: | 阅读次数:

面试题

如何基于 dubbo 进行服务治理、服务降级、失败重试以及超时重试?

面试官心理分析

服务治理,这个问题如果问你,其实就是看看你有没有服务治理的思想,因为这个是做过复杂微服务的人肯定会遇到的一个问题。

服务降级,这个是涉及到复杂分布式系统中必备的一个话题,因为分布式系统互相来回调用,任何一个系统故障了,你不降级,直接就全盘崩溃?那就太坑爹了吧。

失败重试,分布式系统中网络请求如此频繁,要是因为网络问题不小心失败了一次,是不是要重试?

超时重试,同上,如果不小心网络慢一点,超时了,如何重试?

阅读全文 »

如何实现 MySQL 的读写分离?

发表于 2019-03-04 | 分类于 面试题 | 评论数: | 阅读次数:

面试题

你们有没有做 MySQL 读写分离?如何实现 MySQL 的读写分离?MySQL 主从复制原理的是啥?如何解决 MySQL 主从同步的延时问题?

面试官心理分析

高并发这个阶段,肯定是需要做读写分离的,啥意思?因为实际上大部分的互联网公司,一些网站,或者是 app,其实都是读多写少。所以针对这个情况,就是写一个主库,但是主库挂多个从库,然后从多个从库来读,那不就可以支撑更高的读并发压力了吗?

面试题剖析

如何实现 MySQL 的读写分离?

其实很简单,就是基于主从复制架构,简单来说,就搞一个主库,挂多个从库,然后我们就单单只是写主库,然后主库会自动把数据给同步到从库上去。

MySQL 主从复制原理的是啥?

主库将变更写入 binlog 日志,然后从库连接到主库之后,从库有一个 IO 线程,将主库的 binlog 日志拷贝到自己本地,写入一个 relay 中继日志中。接着从库中有一个 SQL 线程会从中继日志读取 binlog,然后执行 binlog 日志中的内容,也就是在自己本地再次执行一遍 SQL,这样就可以保证自己跟主库的数据是一样的。

mysql-master-slave

阅读全文 »
1…678…13
YXZ

YXZ

127 日志
15 分类
57 标签

标签云

  • @Async1
  • AOP1
  • Activity3
  • Android1
  • Angular5
  • Binder1
  • Canvas2
  • Centos3
  • ES3
  • Event1
  • EventBus1
  • Handler1
  • Hexo4
  • Hystrix7
  • Intent1
  • Jakeson1
  • Java11
  • Javascript3
  • Java面试题1
  • Json1
  • Linux1
  • ListView1
  • Maven1
  • Mybatis4
  • Mysql6
  • Service1
  • Spring2
  • Springboot3
  • Springcloud7
  • View2
  • Websocket3
  • Window1
  • Yilia2
  • dubbo7
  • lucene1
  • redis9
  • replaceAll1
  • yilia主题1
  • zookeeper1
  • 分布式6
  • 小程序4
  • 广播1
  • 微服务1
  • 性能优化1
  • 懒加载1
  • 扫福字1
  • 推送1
  • 插件1
  • 正则表达式1
  • 消息队列6
  • 系统架构1
  • 缓存技术1
  • 自动注入1
  • 进程1
  • 面试题38
  • 项目发布1
  • 高并发1
RSS
GitHub 微博

Advertising Position

苏ICP备18068125号-1 © 2019 YXZ的个人博客
|
0%